
Duplicate Replies
Problem analysis
Tue, Oct 29, 2002

For an Acnet server request that is based upon a clock event, duplicate first-time replies are sometimes
observed. This note analyzes how this occurs and seeks to devise a solution for it.

If the Acnet request arrives early in the 15 Hz cycle, before the Server task runs, and if the request
specifies the 0x0C clock event, which occurs at 15 Hz, the contributing nodes reply right away as soon as
they receive and initialize the request. When the last contributing node has replied to the server, the
composite reply is delivered to the requesting node promptly. Later in the same cycle, when the Server
task runs, it decides that the request should be fulfilled, since it is based on an event that is true for this
cycle (any cycle for 0x0C). The data sent for both replies during the same cycle will be the same.

The system code behind this logic exists in order to provide prompt replies to one-shot server requests.
When all of the contributing nodes have replied, the first composite rpeply can be delivered. Since each
contributing node will deliver a prompt first-time reply, no delays are introduced for one-shot requests,
even when they pass through a server node. (Delays only occur if the server node or a contributing node is
busy with some other task.)

Similar logic exists for Classic server requests, so that Classic one-shot requests are answered promptly. In
the Classic case, the first-time reply for a periodic request also gets the same treatment. But event-based
Classic requests do not. This means that the first reply from a server node cannot occur before the Server
task time of the cycle, which is typically 40 ms, although it is 48 ms for the Linac server node0600 as of this
writing.

Returning to Acnet protocol, here is the list of references to the SAGE field of the SRB (Server Request Block)
structure.

In SERVER, as a server request is initialized, SAGE is set to –2. In REQUEST, the FTDCNTR field is
initialized to 2 or 3 if a periodic request, or to –1 if an event-based request.

In SREPLY, while processing a reply from a contributing node, if the SAGE < 0, count 1 for a first
packet received from this node. Reset SAGE to the low 15 bits of CYCLECNT. If this is a first time reply that
completes the reply buffer, clear FTDCNTR and call ACUPSERV to deliver a prompt reply to the requesting
node.

In ACUPSERV, if SAGE >= 0, it implies that a reply has been received since the request was
initialized. Its value in this case is CYCLECNT & 0x7FFF as of the time the reply was processed. If the
request is not an event-based request, and the number of cycles since that time > the period indicated by the
FTD, then answers are tardy, a 36 –7 error will ensue, and SAGE is reset to a suitable delay count, which is
the #periods in 2 seconds, if the period is less than 30 cycles, or 1, if the period is at least 2 seconds, less 1. If
a re-send is required, each successive SRB has SAGE set to –1000 in order to prevent multiple re-sends as it
continues to look for SRB entries that indicate a resend is needed. A re-send is indicated if SAGE = –2. Then
SAGE at the current entry is set to the suitable delay count described above.

After queuing reply message to the network, if a periodic request, set FTDCNTR to the period in 15
Hz cycles.

Let’s try to follow the logic for a simple case, that of a 15 Hz request sent to node0600 that asks for data
from another node. SAGE is initialized to –2. Suppose the request arrived early in the cycle, before the
Server task runs. It is immediately forwarded to the other node, and a reply promptly ensues. In SREPLY,
SAGE is set to the low 15 bits of CYCLECNT. Because this is the first-time reply that completes the reply
buffer, FTDCNTR is set to zero, and ACUPSERV is called to deliver the prompt reply to the client. This results
in setting FTDCNTR to 1. When the Server task runs, ACUPSERV is called for a second time in the same

cycle. When FTDCNTR is decremented, the result is zero, so another reply (a duplicate reply) is delivered.
On the following cycles, there will not be duplicate replies, since the update count (RQUPDTCT) is no longer
zero.

In this example, if the request had arrived after the Server task time, a prompt reply would be delivered,
but the second reply would not be sent until Server task time during the following cycle; thus, there
would not be duplicate replies.

How would the example differ for the case of a 15 Hz event, such as 0x0C? The prompt reply is still
delivered, but FTDCNTR is set to –1, which is normal for the event case. At Server task time, the second
reply will be delivered, as the event is still true, of course.

A possible solution for this problem: One-shot requests should always get prompt replies. But if the request
is either periodic or event-based, only deliver a prompt reply if the Server task has already run during the
present cycle. If the Server task has not yet run, omitting the prompt reply will merely defer the first-time
reply until the Server task runs. This should eliminate the duplicate reply problem. Here is the assembly
code solution at end of SREPLY:

 MOVE.L A2,A0 ;Ptr to request block
 TST.L RQUPDTCT(A0) ;Count of #times request updated
 IF# EQ THEN.S ;Not yet the first time
 MOVE.L RQABLKPT(A0),A4 ;Ptr to answers block
 MOVE D6,SPARE1(A4) ;Accumulate #packets received so far
 IF# D6 EQ RQREQ+NRPKTS(A0) THEN.S ;all packets accounted for
 MOVEQ #1,D0 ;MLT mask in message type word in Acnet header
 AND RQAHDR+MSGTYPE(A0),D0
 IF# NE THEN.S ;not a one-shot request
 CLR FTDCNTR(A0) ;Update first response in Server task this cycle
 BTST #0,SERVDONE(A5) ;flag=1 if Server task already run this cycle
 EORI #4,CCR ;EQ if Server task already run
 ENDIF#
 IF# EQ THEN.S ;one-shot OR Server task already run
 CLR FTDCNTR(A0) ;Update first response now,
 BSR.W ACUPSERV ;just as Server Task normally does.
 IF# NE THEN.S ;Queued to network
 MOVE.L #$000400+UPDTTASK,D0
 BSR.L TRIGTASK ;Flush network queue
 ENDIF#
 ENDIF#
 ENDIF#
 ENDIF#

Testing with an event 0x0C request, this code seemed to prevent the duplicate replies. The request arrived
early in the cycle, but no prompt reply ensued. At Server task time, however, the reply was delivered to
the requesting node. A one-shot request got a prompt reply.

Duplicate Replies p. 2

